Exercise 97

The volume of a cube is increasing at a rate of $10 \mathrm{~cm}^{3} / \mathrm{min}$. How fast is the surface area increasing when the length of an edge is 30 cm ?

Solution

Write formulas for the volume and surface area of a cube in terms of its edge length x.

$$
\left\{\begin{array}{l}
V=x^{3} \\
S=6 x^{2}
\end{array}\right.
$$

In order to get the rates at which these quantities change as time increases, differentiate both sides of each equation with respect to t and use the chain rule.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d}{d t}(V)=\frac{d}{d t}\left(x^{3}\right) \\
\frac{d}{d t}(S)=\frac{d}{d t}\left(6 x^{2}\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{d V}{d t}=3 x^{2} \frac{d x}{d t} \\
\frac{d S}{d t}=12 x \frac{d x}{d t}
\end{array}\right.
\end{aligned}
$$

Now set $d V / d t=10$ and $x=30$.

$$
\left\{\begin{array}{c}
10=3(30)^{2} \frac{d x}{d t} \\
\frac{d S}{d t}=12(30) \frac{d x}{d t}
\end{array}\right.
$$

This is a system of two equations for $d x / d t$ and $d S / d t$. Solve the first equation for $d x / d t$,

$$
\frac{d x}{d t}=\frac{10}{3(30)^{2}}=\frac{1}{270},
$$

and plug it into the second equation.

$$
\frac{d S}{d t}=12(30)\left(\frac{1}{270}\right)=\frac{4}{3}
$$

Therefore, the surface area is increasing at a rate of about $1.333 \mathrm{~cm}^{2} / \mathrm{min}$ when the edge length is 30 cm .

